

Variability of African Easterly Waves

- (1) Background
- (2) Variability in AEW Structures and their relationship to tropical cyclones
- (3) Intraseasonal Variability of AEW-activity and its relationship to tropical cyclones
- (4) Summary

The Coupled Monsoon System

Key Weather Systems

AEWs and TCs

Ivan close to the Yucatan

OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Streamfunction (contours 1 X 10⁵ m² s⁻¹)
Wind (vectors, largest around 2 m s⁻¹)
OLR (shading starts at +/- 6 W s⁻²), negative blue

OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Streamfunction (contours 1 X 10⁵ m² s⁻¹)
Wind (vectors, largest around 2 m s⁻¹)
OLR (shading starts at +/- 6 W s⁻²), negative blue

OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Wind (vectors, largest around 2 m s⁻¹)

OLR (shading starts at +/- 6 W s⁻²), negative blue

OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Wind (vectors, largest around 2 m s⁻¹)

OLR (shading starts at +/- 6 W s⁻²), negative blue

OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Streamfunction (contours 1 X 10⁵ m² s⁻¹)
Wind (vectors, largest around 2 m s⁻¹)
OLR (shading starts at +/- 6 W s⁻²), negative blue

OLR and 850 hPa Flow Regressed against TD-filtered OLR (scaled -20 W m²) at 10°N, 10°W for June-September 1979-1993

Streamfunction (contours 1 X 10⁵ m² s⁻¹)
Wind (vectors, largest around 2 m s⁻¹)
OLR (shading starts at +/- 6 W s⁻²), negative blue

AEW Storm Tracks

ERA40, VOR700, +ve, 1958-2002, JJA

ERA40, VOR850, +ve, 1958-2002, JJA

Thorncroft and Hodges (2001)

Importance of Guinea Highlands

Fouta Djallon Highlands ~914m

- Marked transition takes place close to Guinea Highlands and Coastal region
- •AEWs are often invigorated as they pass these regions especially at low-levels
- May influence tropical cyclogenesis probabilities

Importance of Guinea Highlands

Composites of East Atlantic Developing and Non-Developing AEWs (1979-2001)

Importance of Guinea Highlands

Composites of East Atlantic Developing and Non-Developing AEWs (1979-2001)

850hPa Rel. Vort. [10⁻⁵s⁻¹]

925hPa Streamlines (Grey)

700hPa Streamlines (Black)

Objective Mean Trough Locations (Thick Black Contours)

Brammer and Thorncroft (2014)

Day 0
Developing Non-developing

Brammer and Thorncroft (2014)

3. Variability in African Easterly Wave Activity

3. Variability in African Easterly Wave Activity

Approach taken here is to consider impact of known phenomena on AEW-activity.

MJO has a coherent relationship with AEW-activity (measured by EKE):

Ventrice, Thorncroft and Roundy, 2012

Alaka and Maloney, 2013

Convectively Coupled Kelvin Waves can impact convection and AEWs:

Ventrice, Thorncroft and Roundy,2012

Ventrice and Thorncroft, 2013

Variability in African Easterly Wave Activity - MJO

Variability in African Easterly Wave Activity - MJO

RMM Phase 1

RMM Phase 2

RMM Phase 3

RMM Phase 4

RMM Phase 5

RMM Phase 6

RMM Phase 7

RMM Phase 8

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

- Unfiltered total OLR field (Shaded)
- •Kelvin filtered OLR (Contours) are contoured if statistically different than zero at the 95% level
- •Positive (Negative) Kelvin filtered OLR anomalies 850 hPa wind anomalies (Vectors)

Variability in African Easterly Wave Activity - CCKWs

Shading: Kelvin filtered brightness temperature (Tb) anomalies

<u>Contours</u>: Tropical Depression type wave filtered Tb anomalies

- AEW wave train develops after the passage of convectively active phase of a CCKW.
- AEWs initiate (or amplify) east of one another

from Mekonnen et al. 2008

CCKW-AEW-activity Relationship

Shading: 700 hPa EKE anomalies (contoured if statistically different than zero at the 90% level)

Bold Black Contours: Kelvin filtered OLR anomalies (dashed if negative)

AEW-CCKW-TC Relationships

Final Comments

Regional Variations in AEW Structure

- There are marked variations in AEW structures as they propagate between the African continent and the ocean.
- AEWs intensify and develop low level circulations as they pass the Guinea Highlands and coastal region.
- •Variability in these processes likely impacts probability of tropical cyclogenesis.
- The most important differentiator between favorable AEWs that develop and those that do not is the presence (or not) of moist air at low-levels ahead of the AEW.

Final Comments

Variability in AEW Activity

- There is marked sub-seasonal variability in AEW activity.
- The MJO influences AEW-activity.
- This talk has highlighted the role of Convectively Coupled Kelvin Waves in generating such variability.
- CCKW-AEW interactions can influence the probability of rainfall over the African continent and tropical cyclogenesis in the tropical Atlantic.

Monitoring AEW-quality in Real-Time

Favourable characteristic based on wave climatology CFSR 1979-2012

Top 33%

Mid 33%

Bottom 33%

PW - Precipitable Water

W - Vertical Velocity (700-400hPa)

RV - Relative Vorticity (900-600hPa)

EA - Eastern Atlantic Precipitable Water

Monitoring AEW-quality in Real-Time

Brammer and Thorncroft (2014)

Monitoring AEW-quality in Real-Time

Wave characteristics vary a lot during the season.

Brammer and Thorncroft (2014)